Reactive Reinforcement Learning in Asynchronous Environments
نویسندگان
چکیده
The relationship between a reinforcement learning (RL) agent and an asynchronous environment is often ignored. Frequently used models of the interaction between an agent and its environment, such as Markov Decision Processes (MDP) or Semi-Markov Decision Processes (SMDP), do not capture the fact that, in an asynchronous environment, the state of the environment may change during computation performed by the agent. In an asynchronous environment, minimizing reaction time—the time it takes for an agent to react to an observation— also minimizes the time in which the state of the environment may change following observation. In many environments, the reaction time of an agent directly impacts task performance by permitting the environment to transition into either an undesirable terminal state or a state where performing the chosen action is inappropriate. We propose a class of reactive reinforcement learning algorithms that address this problem of asynchronous environments by immediately acting after observing new state information. We compare a reactive SARSA learning algorithm with the conventional SARSA learning algorithm on two asynchronous robotic tasks (emergency stopping and impact prevention), and show that the reactive RL algorithm reduces the reaction time of the agent by approximately the duration of the algorithm’s learning update. This new class of reactive algorithms may facilitate safer control and faster decision making without any change to standard learning guarantees.
منابع مشابه
Convergence of Indirect Adaptive Asynchronous Value Iteration Algorithms
Reinforcement Learning methods based on approximating dynamic programming (DP) are receiving increased attention due to their utility in forming reactive control policies for systems embedded in dynamic environments. Environments are usually modeled as controlled Markov processes, but when the environment model is not known a priori, adaptive methods are necessary. Adaptive control methods are ...
متن کاملEmergent Hierarchical Control Structures: Learning Reactive/Hierarchical Relationships in Reinforcement Environments
The use of externally imposed hierarchical structures to reduce the complexity of learning control is common. However, it is acknowledged that learning the hierarchical structure itself is an important step towards more general (learning of many things as required) and less bounded (learning of a single thing as speci ed) learning. Presented in this paper is a reinforcement learning algorithm c...
متن کاملDynamic Obstacle Avoidance by Distributed Algorithm based on Reinforcement Learning (RESEARCH NOTE)
In this paper we focus on the application of reinforcement learning to obstacle avoidance in dynamic Environments in wireless sensor networks. A distributed algorithm based on reinforcement learning is developed for sensor networks to guide mobile robot through the dynamic obstacles. The sensor network models the danger of the area under coverage as obstacles, and has the property of adoption o...
متن کاملReinforcement Learning for Coordinated Reactive Control
The demands of rapid response and the complexity of many environments make it diicult to decompose, tune and coordinate reactive behaviors while ensuring consistency. Reinforcement learning networks can address the tuning problem, but do not address the problem of decomposition and coordination. We hypothesize that interacting reactions can often be decomposed into separate control tasks reside...
متن کاملOn the possibility of learning in reactive environments with arbitrary dependence
We address the problem of reinforcement learning in which observations may exhibit an arbitrary form of stochastic dependence on past observations and actions, i.e. environments more general than (PO)MDPs. The task for an agent is to attain the best possible asymptotic reward where the true generating environment is unknown but belongs to a known countable family of environments. We find some s...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1802.06139 شماره
صفحات -
تاریخ انتشار 2018